Схемы приемопередатчиков кв трансиверов с раздельными блоками. Показать содержимое по тегу: трансивер. Моточные данные контура


Рассмотрим 3 лучшие рабочие схемы трансиверов. Первый проект предполагает создание самого простого прибора. По второй схеме можно собрать рабочий КВ трансивер на 28 МГц с мощностью передатчика 0,4 Вт. Третья модель - полупроводниково-ламповый трансивер. Давайте разбираться по порядку.

  • Смотрите также 3 рабочие для монтажа своими руками

Простой, самодельный трансивер: схема и монтаж своими руками

Слово трансивер у многих начинающих радиолюбителей ассоциируется со сложнейшим устройством. Но есть схемы, которые имея всего 4 транзистора, способны в телеграфном режиме обеспечить связь на сотни километров.

Изначально представленная ниже принципиальная схема трансивера была рассчитана под высокоомные наушники. Пришлось немного переделать усилитель, чтоб была возможность работать и с низкоомными наушниками 32 Ом.

Принципиальная схема простого трансивера на 80м

Моточные данные контура:

  1. Катушка L2 имеет индуктивность 3.6 мкГ - это 28 витков на оправе 8 мм, с подстроечным сердечником.
  2. Дроссель - стандартный.


Как настроить трансивер?

В особо сложной настройке приёмопередатчик не нуждается. Всё просто и доступно:

Начинаем с УНЧ, подбором резистора R5 устанавливаем на коллекторе транзистора + 2В и проверяем работоспособность усилителя, коснувшись пинцетом входа - в наушниках при этом должен прослушиваться фон.

Затем переходим к настройке кварцевого генератора, убеждаемся, что генерация идет (это можно сделать с помощью частотомера или осциллографа снимая сигнал с эмиттера vt1).

Следующий этап - это настройка трансивера на передачу. Вместо антенны вешаем эквивалент - резистор 50 Ом 1 Вт. Параллельно ему подключаем ВЧ вольтметр, при этом включаем трансивер на передачу (нажатием ключа), начинаем вращать сердечник катушки L2 по показаниям ВЧ вольтметра и добиваемся резонанса.

Вот в принципе и все! Не следует ставить мощный выходной транзистор, с прибавкой мощности появляются всевозможные свисты и возбуждения. Этот транзистор играет две роли - как смеситель при приеме и как усилитель мощности при передаче, так что кт603 здесь за глаза будет.

  • Читайте также, как сделать
И, наконец, фото самой конструкции:


Так как рабочие частоты всего несколько мегагерц, можно применить любые ВЧ транзисторы соответственной структуры.

Печатную плату можно скачать ниже:

Файлы для скачивания:

КВ трансивер на 28 МГц с мощностью передатчика 0,4 Вт

Рассмотрим подробно принципиальную схему самодельного коротковолнового трансивера на диапазон частот 28 МГц, с выходной мощностью передатчика 400 милливат.

Принципиальная схема трансивера


Приемник трансивера является обычным сверхрегенеративным детектором. Единственной его особенностью можно считать переменный резистор R11, который облегчает настройку. При желании его можно вынести на лицевую панель трансивера.

Чувствительность приемника повышена за счет применения в усилителе 34 микросхемы К174УН4Б, которая при питании от батареи напряжением 4,5 В развивает мощность 400 мВт.

Цепь громкоговорителя соединена с минусом источника питания, что позволило упростить коммутацию с цепью микрофона и использовать спаренную кнопку, которой в режиме передачи отключаются громкоговоритель и питание приемника, а в режиме приема подключаются микрофон и питание передатчика. На схеме кнопка SA1 показана в положении приема.

  • Схема самодельного
Передатчик собран на двух транзисторах и представляет собой двухтактный автогенератор с кварцевой стабилизацией в цепи обратной связи. Относительно стабильная частота автогенератора позволяет при небольшой мощности передатчика добиться достаточно большого радиуса связи с однотипной радиостанцией.

Детали и конструкция КВ трансивера

В трансивере применены резисторы МЛТ-0,125 и конденсаторы К50-6.

Транзистор VT1 можно заменить на ГТ311Ж, КТ312В, а транзисторы VT2, VT3 - на ГТ308В, П403. Условия замены транзисторов следующие: VT1 должен иметь как можно больший коэффициент усиления на граничной частоте, а транзисторы VT2 и VT3 - иметь одинаковый коэффициент передачи тока.

Контурные катушки L1 и L2 намотаны на каркасах диаметром 5 мм. Они имеют подстроенные сердечники из карбонильного железа диаметром 3,5 мм. Катушки заключены в экраны размером 12x12x17 мм.

Экран катушки L1 соединен с минусом батареи питания, a L2 - с плюсом. Обе катушки намотаны проводом ПЭВ диаметром 0,5 мм и имеют по 10 витков каждая.

При изготовлении катушек L1 и L2 можно использовать контуры от тракта ПЧ телевизоров. Именно такой же каркас длиной 25 мм и диаметром 7,5 мм используется при изготовлении катушек L3 и L4. На плате они располагается горизонтально.

Намотка катушки L3 ведется с шагом 1 мм, катушка имеет 4 + 4 витка провода ПЭВ диаметром 0,5 мм с отводом от середины, расстояние между половинами обмотки - 2,5 мм.

Катушка L4 содержит 4 витка того же провода, мотается виток к витку и расположена между половинами обмотки катушки L3. Дроссели L5 и L6 намотаны на резисторах промышленного изготовления от трактов ПЧ старых телевизоров.

Громкоговоритель можно применить любой с сопротивлением 8 Ом. Подойдут громкоговорители типа 0ДГД-8, 0ДГД-6; 0,25ГДШ-3.

Трансформатор Т1 наматывается на любом малогабаритном магнитопроводе, например, типа ШЗхб, и содержит в первичной обмотке 400 витков провода ПЭВ диаметром 0,23 мм, во вторичной - 200 витков того же провода.

  • Пошаговая сборка
В качестве микрофона используется малогабаритный капсюль ДЭМШ-1а. Антенна - телескопическая, имеет длину 105 мм. В качестве источника питания применяется батарея из четырех элементов типа А316, А336, А343.

Налаживание

Настраивать трансивер необходимо с УЗЧ. Отпаяв резистор R5, в разрыв цепи SA2 подключают миллиамперметр. Ток в режиме покоя не должен превышать 5 мА.

При касании отверткой точки А в громкоговорителе должен появляться шум. Если усилитель самовозбуждается, то сопротивление резистора R4 необходимо повышать до 1,5 кОм, но при этом помнить, что чем выше номинал резистора, тем ниже чувствительность усилителя.

Если шума нет, необходимо перемещать движок резистора R11 из верхнего (по схеме) положения в нижнее. Должен появиться громкий устойчивый шум, что говорит о хорошей работе сверхрегенеративнного детектора.

Дальнейшая настройка приемника производится только после настройки передатчика и заключается в подгонке емкости конденсатора С5 (грубая настройка) и индуктивности L1 (точная настройка) к режиму наилучшего приема сигнала передатчика.

При настройке передатчика необходимо в разрыв цепи «х» включить миллиамперметр и величину сопротивления R6 подобрать такой, чтобы ток в этой цепи был равен 40–50 мА.

Затем надо подключить миллиамперметр с пределом измерения 50 мкА к плюсовой шине передатчика, а другой конец прибора через диод и конденсатор 1(>-20 пФ - к антенне.

Подстройка элементов L3, L4, С17, L2 и С18 ведется до максимального отклонения стрелки прибора. Причем грубо настраивают конденсаторами, а точнее - сердечниками контуров.

Подстрочник катушки L3–L4 должен находиться не далее ±3 мм от среднего положения, так как в крайних его точках может срываться генерация из-за нарушения симметрии плеч транзисторов VT2 и VT3.

Настраивая при выдвинутой антенне L2 и С18 по максимальному отклонению стрелки прибора, необходимо добиться полного согласования антенны и передатчика.

Если при включении передатчика внезапно срывается генерация, то это свидетельствует о неправильной настройке. В таком случае необходимо снова подобрать режимы работы VT2 и VT3, тщательно настроить L2, L3, L4, а если это не поможет, то подобрать транзисторы с более близкими параметрами.

Двухдиапазонный лампово-полупроводниковый трансивер

Этот трансивер можно выполнить на любой диапазон от 1.8 до 10 МГц и увеличить мощность, если сильно надо. Он построен по схеме с «одним преобразованием».

Частота ПЧ = 5,25 МГц. Выбор частоты ПЧ обусловлен тем, что при частоте гетеродина 8,75–9,1 МГц перекрывается сразу два диапазона 3,5 и 14 МГц.

В этой схеме применен самодельный лестничный 7-ми кристальный кварцевый фильтр по схеме, предложенной Kirs Pinelis (YL2PU) в известном трансивере DM2002.

Оба диодных смесителя выполнены по классической схеме с применением трансформаторов с объемным витком связи.

Схема трансивера


Схема разработана на 5 пальчиковых лампах. Она включает регулируемый усилитель высокой и промежуточной частоты, балансный смеситель и гетеродин. Пройдем по схеме по порядку.

В режиме приема сигнал через полосовые фильтры L1–L2 подается на УВЧ, выполненный на лампе 6К13П. Далее он подается на первый смеситель тракта, выполненный по кольцевой схеме. На один из входов смесителя подается сигнал с первого гетеродина. Полученный сигнал промежуточной частоты подается на кварцевый фильтр, через согласующий контур.

Данная схема согласования позволяет несколько уменьшить потери на участке первый смеситель - УПЧ. Затем сигнал ПЧ усиливается в реверсивном усилителе на лампе 6Ж9П. Усиленный сигнал, выделяясь на контуре L5, подается на второй смеситель тракта, выполненный по кольцевой схеме, выполняющий роль детектора SSB сигнала.

НЧ - сигнал выделяется на RC-цепочке и подается на пентодную часть 6Ф12П, выполняющую роль предварительного УНЧ. Триодная часть в режиме приема выполняет роль катодного повторителя для системы АРУ. УМ УНЧ (он же УМ передатчика) выполнен на пентоде 6П15П.

В режиме передачи все каскады приемника реверсируются с помощью реле РЭС-15 с паспортом 004 (лучше применить более надежные реле). Переключение режимов прием/передача осуществляется переключателем PTT.

Особенности подбора компонентов

Дроссели применены обычные Д-0,1.

Трансформаторы ТР1–ТР3 выполнены на ферритовых кольцах 1000НН внешним диаметром 10–12 мм и содержат 15 витков скрученного втрое (для ТР1 и ТР2) провода ПЭЛ-0,2 и вдвое для ТР3.

Звуковой (выходной) трансформатор любой с коэффициентом трансформации от 2,5 кОм до 8 Ом. Силовой трансформатор применен с габаритной мощностью 70 Вт.

Катушки L1–L3 намотаны проводом ПЭЛ-0,25 и содержат по 30 витков. Катушки L4–L5 содержат по 55 витков ПЭЛ-0,1, все катушки связи намотаны проводом ПЭЛШО 0,3 на бумажных гильзах поверх соответствующих контурных катушек, а количество витков выражено на схеме соотношением для каждого случая.

Катушка L6 имеет 60 витков проводом 0,1 (для всех контуров возможно использовать каркасы от контуров ПЧ ламповых телевизоров серии УНТ).

Катушка ГПД применена от приемника Р–326, при самостоятельном изготовлении (что очень трудоемко) выполняется на 18 мм керамическом каркасе проводом ПЭЛ 0,8 15 витков с шагом 0,5 мм. Отводы от 3 и 11 витков с (холодного) конца. Катушка П-контура выполнена на каркасе диаметром 30 мм и имеет 26 витков провода ПЭЛ 0,8, отвод для 14 МГц подбирается экспериментально.

Настройка лампового трансивера

Не рассматривая вопросы настройки самодельных кварцевых фильтров, что рассмотрено во многих публикациях, остальное налаживание схемы достаточно просто. Проверка работоспособности УНЧ возможна как на слух, так и осциллографом. Затем подгоняют частоту кварцевого гетеродина катушкой L6 до требуемой (точка -20 дБ на скате кварцевого фильтра). Затем грубо устанавливаем чувствительность тракта поочередной настройкой контуров ДПФ и ПЧ по максимальному шуму в громкоговорителе. Потом можно точнее настроить контура при приеме сигналов с эфира, либо использовать ГСС.

Далее переходим в режим передачи. Переменным резистором «баланс» устанавливаем минимум напряжения несущей после смесителя (используем осциллограф или милливольтметр). Затем с помощью контрольного приемника регулируем переменный резистор 22 кОм до получения качественной модуляции.

Настройка генератора плавного диапазона

Следует убедиться, что ГПД генерирует высокочастотные колебания. Здесь могут быть полезны частотомер (цифровая шкала) и осциллограф.

Застабилизировав напряжение, питающее генератор плавного диапазона, переходят к его настройке. Ее следует начать с внешнего осмотра ГПД в ходе которого необходимо убедиться, что все конденсаторы применены типа СГМ группы «Г». Это очень важно, так как их нестабильность емкости или температурного коэффициента будет отражаться на общей стабильности частоты генератора.

Требования к качеству контурной катушки ГПД общеизвестны. Это одна из важнейших деталей аппарата. Никаких катушек сомнительного качества здесь применять нельзя! Очень ответственно следует отнестись к подбору конденсаторов, составляющих контур ГПД. Это конденсаторы типа КТ, один - красного или голубого цвета, а другой - синего. Соотношение их емкостей, дающих суммарную емкость в 100 пФ, подбирается с применением способа нагрева монтажа и шасси, о чем будет ниже.

Приступают к укладке границ частот, генерируемых генератором плавного диапазона. В рамках этой работы, добиваются чтобы при полностью введенных пластинах конденсатора переменной емкости (КПЕ), ГПД генерировал частоту примерно 8,75 МГц. Если она окажется ниже, емкость конденсаторов необходимо несколько уменьшить, если выше - увеличить. Первоначально при подборе этой емкости обращают относительное внимание и на соотношение цветов, составляющих ее конденсаторов.

При полностью выведенных пластинах КПЕ (минимальная емкость), ГПД должен генерировать частоту близкую к 9,1 МГц. Частоту ГПД контролируют по частотомеру (цифровой шкале), подключенному к выводу для цифровой шкалы.

Завершив укладку частотного диапазона ГПД, приступают к термокомпенсации этого генератора, заключающейся в подборе соотношения емкостей конденсаторов красного и синего цветов, составляющих емкость контура. Эта работа производится при помощи упоминавшегося ранее частотомера, обеспечивающего точность измерения частоты не хуже 10 Гц. Перед работой с частотомером он должен быть хорошо прогрет.

Включается трансивер и прогревается 10–15 минут. Затем, используя настольную лампу, медленно разогревают детали и шасси ГПД. Причем разогревать лучше не их непосредственно, а участок, несколько удаленный от ГПД, находящийся, примерно, между ГПД и выходной генераторной лампой. При достижении в районе ГПД температуры 50–60 градусов, отмечают в какую сторону ушла частота ГПД. Если увеличилась - температурный коэффициент конденсаторов, составляющих контур, отрицательный и значителен по абсолютной величине. Если уменьшилась - коэффициент или положителен, или отрицателен, но мал по абсолютному значению.

Как уже упоминалось, применены конденсаторы типа КТ с различными зависимостями обратимого изменения емкости при изменении температуры. Конденсаторы с положительным ТКЕ (температурный коэффициент емкости) имеют синий или серый цвет корпуса. Нейтральный ТКЕ у голубых конденсаторов с черной меткой. Голубые конденсаторы с коричневой или красной меткой имеют умеренный отрицательный ТКЕ. И наконец, красный корпус конденсатора свидетельствует о значительном отрицательном ТКЕ.

Дав узлу полностью остыть, заменяют конденсаторы, изменив их температурный коэффициент в нужную сторону, сохранив прежней суммарную емкость. При этом следует постоянно проверять сохранность произведенной ранее укладки частот ГПД.

Эти операции следует повторять до тех пор, пока не будет достигнуто того, что при повышении температуры ГПД на 35–40 градусов будет вызываться сдвиг частоты ГПД не более чем на 1 кГц.

Это означает, что частота трансивера при его прогреве в процессе нормальной работы не будет уходить более чем на 100 Гц за 10–15 минут.

Дополнительную стабильность обеспечит ЦАПЧ примененной ЦШ (Макеевская).

Опорный кварцевый генератор выполнен транзисторе КТ315Г и в комментариях не нуждается. Выполнять его на дополнительной лампе нет смысла.

Описание готового трансивера, печатные платы, фото

Печатная плата трансивера - размер 225 на 215 мм:



Переднюю панель делаем следующим образом:
  1. На прозрачной пленке на лазерном принтере печатаем панельку 1:1.
  2. Затем обезжириваем её и наклеиваем двухсторонний скотч (продается на строительных рынках). Так как ширины скотча не хватает на всю панель, наклеиваем несколько полосок.
  3. Потом снимаем со скотча верхнюю бумагу и клеим нашу пленку. Тщательно разравниваем.
  4. Затем скальпелем вырезаем отверстия под переменные резисторы, кнопки и т. п. Под дисплей вырезать не нужно.
На этом всё!

Вид полупроводниково-лампового трансивера внутри:


Внешний вид трансивера:


Видео о том, как собрать мини-трансивер на двух транзисторах своими руками:

Трансивер предназначен для работы CW и SSB. Он выполняет функции приемника и возбудителя передатчика, обеспечивая работу на всех разрешенных любительских KB-диапазонах.

Чувствительность трансивера не хуже 0,5 мкВ.

При приеме из антенны сигнал поступает на плавный балансный аттенюатор, который обеспечивает его ослабление до 60 дБ. Затем сигнал выделяется полосовыми диапазонными фильтрами и подается на усилитель высокой частоты VT1, который работает реверсивно. В режиме приема он работает как усилитель с общей базой. Усиленный сигнал поступает на реверсивный двухбалансный смеситель на диодах VD3 - VD10.

Выделенный смесителем сигнал промежуточной частоты подается на первый каскад усилителя промежуточной частоты VT2, который также работает в реверсивном режиме. В режиме приема он включен как усилитель с общим затвором. При таком включении транзистор является активной нагрузкой смесителя в широкой полосе частот.

Рис. 1

Усиленный сигнал, отфильтрованный кварцевым фильтром, поступает на второй каскад усилителя промежуточной частоты VT3. Кварцевый фильтр, частота и вид которого выбираются, исходя из имеющихся в наличии резонаторов, должен иметь входное и выходное сопротивления в пределах 75 - 300 Ом. Резистор R10 подбирается с сопротивлением, равным Рвых кварцевого фильтра. Усилитель ПЧ на транзисторе VT3 - резонансный и реверсивный. В режиме приема работает как усилитель с общим затвором. С катушки связи L2 усиленный сигнал поступает на модулятор-демодулятор, выполненный на диодах VD15 - VD18, на который через С 15 подается напряжение с кварцевого опорного генератора.

Звуковая частота, выделенная на выходе модема усиливается УНЧ VT4, DA1. Нагрузкой служат низкоомные головные телефоны или громкоговоритель.

Так как для питания DA1 необходимо напряжение 9В, на транзисторе VT6 выполнен стабилизатор напряжения 8 - 9 В. Переход трансивера с приема на передачу осуществляется подачей коммутирующего напряжения (+12 В); (0 В) - "земля" на выводы 5 и 6 основной платы.

Ключ на транзисторе VT5 служит для устранения щелчков при переключении на передачу.

При передаче, напряжение (+12В) снимается с вывода 5 основной платы (который заземляется) и подается (+12 В) на вывод 6. При этом диодами VD1.VD2.VD11, VD12.VD13, VD14 реверсивные усилительные каскады переключаются в режим передачи, а на микрофонный усилитель VT7, VT8 поступает питание.

Усиленный микрофонным усилителем сигнал поступает на модем VD15 - VD18. Сигнал DSB усиливается VT3, работающим как истоковый повторитель, и поступает на кварцевый фильтр, с выхода которого SSB-сигнал через широкополосный трансформатор Тр4, повышающий напряжение в два раза, поступает на затвор

VT2, также работающего как истоковый повторитель.

Усиленный SSB сигнал промежуточный частоты подается на смеситель VD3 - VD10, на вывод 2 которого постоянно подается ВЧ-напряжение с генератора плавного диапазона.

Разностный сигнал усиливается VT1, работающим как эмиттерный повторитель, и выделяется полосовыми диапазонными фильтрами. Далее сигнал поступает на усилитель мощности.

В режиме передачи CW на вывод 3 подается сигнал с телеграфного генератора.

Основная плата (рис.2) имеет размеры 165 х 100 мм и выполнена из двустороннего стеклотекстолита. Фольга со стороны установки деталей служит общим проводом. Размещение деталей показано на рис.3.

Широкополосные трансформаторы выполнены на ферритовых кольцах К10 х б х 5 1000 - 2000 НН. Провод ПЭЛШО- 0,31. Tpl - 7 витков в два провода и 1 виток связи.

Тр2 - 7 витков в три провода.
ТрЗ - 5 витков в три провода.
Тр4 - 7 витков в два провода.
Тр5; Трб - 5 витков в три провода.
Тр - аттенюатора - 7 вит. в три провода.
L1 25 вит., L2 - 3 вит. ПЭЛШО-0,12 с диаметром каркаса 5 мм.

Данные катушек и трансформаторов приведены для ПЧ 9 МГц. При использовании ПЧ в пределах нескольких МГц потребуется соответствующая коррекция L1, L2, данные трансформаторов неизменны.

В TRX может быть введена АРУ (рис.4), при этом изменение в основной плате только одно - эмиттер VT4 необходимо отсоединить от корпуса. АРУ работает следующим образом.

Рис. 4

При отсутствии сигнала на входе УНЧ его усиление максимально, так как на затворе VT1 КП302БМ напряжение равно нулю и его сопротивление канала сток-исток близко к нулю. И, как следствие этого, конденсатор С1 платы АРУ закорочен на землю. При появлении сигнала на выходе УНЧ он усиливается усилителем АРУ на VT2, выпрямляется диодами VD1, VD2. По мере увеличения сигнала на затворе VT1 появляется все большее отрицательное напряжение, и транзистор запирается. За счет этого уменьшается усиление первого каскада УНЧ-приемника на VT4. Узел АРУ монтируется на отдельной плате.

Трансивер не содержит дефицитных деталей, легок в настройке и имеет хорошую повторяемость. Безотказно эксплуатируется автором в течение нескольких лет.

Рис. 5 Чертеж печатной платы

Обозначения:

(0) - раззенкованные отверстия под выводы деталей
( )-монтажные стойки
(X) - пайка деталей к фольге со стороны размещения деталей,

Усилитель мощности трансивера "RadioN" с номинальной мощностью 10 Вт

Усилитель мощности разработан с использованием схемотехнических решений трансивера SW-2013 и т.д. ;) автором которого является Александр Шатун (UR3LMZ). Усилитель разработан для КВ трансивера "RadioN" выполненного на базе реверсивного тракта Сергея Беленецкого (US5MSQ) .






Теперь со всей уверенностью можно заявить, что линейка печатных плат для изготовления трансивера "RadioN" полная:) и начинающим радиолюбителям можно приступать к "строительству" приёмопередатчика. Для многих это будет не первый трансивер изготовленный самостоятельно, но я всё же надеюсь, что процесс сборки, настройки и работы в эфире на этом трансивере оставит в Вашей памяти только хорошие впечатления;) и будут слышны только положительные отзывы. Трансивер изначально планировался для работы SSB и CW на трёх радиолюбительских диапазонах 160, 80 и 40 м, но потом пошли модификации 40, 80 и 20 м, а так же вариации с диапазоном 30 м:)

Ранее были разработаны и уже предлагались в качестве наборов для сборки, собранных плат и чистых печатных плат:
- основная плата (реверсивный тракт с ПЧ=500 кГц и электромеханическим фильтром);
- плата диапазонных полосовых фильтров (ПДФ);
- плата генератора плавного диапазона (ГПД/VFO);

- плата фильтров низкой частоты (ФНЧ) с измерителем КСВ;
- плата универсального синтезатора частот СВ, ДВ, КВ диапазонов под названием "Ёжик";
- плата адаптации/сопряжения универсального синтезатора и реверсивного тракта.
Схемы, описания, фотографии и пр. информация содержится в соответствующих разделах у меня на сайте. Завершает линейку блоков/узлов/плат усилитель мощности на транзисторах IRF510 или RD16HHF1. Причём печатная плата разработана с возможностью установки обоих типов транзисторов. Плата усилителя выполнена односторонней с маской и маркировкой с обеих сторон.

  • размеры печатной платы - 110х50 мм;
  • напряжение питания усилителя мощности - 12...13,8 В постоянного тока;
  • номинальная выходная мощность в диапазоне частот 1,8...15 МГц с транзисторами RD10HHF1- 10 Вт;
  • максимальная выходная мощность - не менее 15 Вт;
  • номинальная выходная мощность в диапазоне частот 1,8...15 МГц с транзисторами IRF510- от 10 Вт на НЧ диапазонах до 3-4 Вт на 20 м;
  • потребляемый ток - до 3 А;
  • чувствительность: варианта на транзисторах IRF510 - 0,15 Вэфф, варианта на транзисторах RD16HHF1 - 0,30 Вэфф
  • управляющий сигнал RX/TX - постоянное напряжение +9 В.

Схема усилителя мощности с выходными транзисторами IRF510 приведена и ниже:


Схема усилителя мощности с выходными транзисторами RD16HHF1 приведена и ниже:


Есть небольшие различия в схемах, думаю они заметны:) Как я уже писал, печатная плата усилителя мощности рассчитана для установки обоих типов транзисторов. IRF510 отдают свои 10 Вт на низкочастотных диапазонах и уже на 20 м наблюдается завал до 2-3 Вт выходной мощности, а усилитель на RD16HHF1 выдаёт ровненько свои 10 Вт на всех диапазонах. Для RD16HHF1 критично наличие на выходе ФНЧ указанного на схеме. Основная часть радиокомпонентов в усилителе для поверхностного монтажа, кроме моточных изделий, реле и разъёмов. Силовые транзисторы устанавливаются под платой и крепятся к теплоотводу. В данном случае предлагается алюминиевый ребристый радиатор 122х50х37 мм с площадью поверхности 500 см кв. в котором необходимо будет просверлить шесть отверстий и нарезать в них резьбу М3. Отверстия необходимы для крепления самой платы и выходных транзисторов. При изготовлении усилителя на транзисторах RD16HHF1, транзисторы крепятся непосредственно к радиатору с использованием теплопроводящей пасты КПТ, а для варианта на IRF510 нужно не забыть, что транзисторы кроме всего прочего нужно изолировать от корпуса и друг от друга, т.е. для крепления нужно обязательно применять изолирующие прокладки и втулки! Также в варианте на IRF510 ФНЧ на катушках L1,L2 не устанавливается (заменяется проволочной перемычкой). Для исключения перегрева выходных транзисторов при длительно работе на передачу эффективная площадь рассеяния радиатора (или металлического шасси/корпуса) должна быть не менее 250 кв.см для RD16HHF1 и не менее 400 кв.см. для IRF510.

Сборка и настройка:

Настройка собранного без ошибок УМ проста и заключается в установке тока покоя транзисторов выходного каскада и сопряжения (регулировке) усиления тракта ПЧ основной платы в составе TRX "RadioN". Перед первым включением УМ нужно убрать перемычку J1, поставить подстроечные сопротивления R19,R20 в положение минимума (отмечено на плате), и через амперметр запитать от источника питания +13,5…+14 В (желательно, на всякий случай, с установленной защитой от перегрузки на уровне 3,5…4 А). Нагружаем выход УМ (непосредственно или через подключённую плату ФНЧ, скоммутированную на диапазон 80 м!) эквивалентом нагрузки мощностью рассеяния не менее 10 Вт. Подав на плату напряжение +9V TX плавной регулировкой R19 выставляем ток покоя верхнего транзистора VT6 на уровне 250 мА, с учётом тока потребления реле К1 порядка 12-16 мА, амперметр должен показать 260-265 мА, затем плавной регулировкой R20 выставляем ток покоя нижнего транзистора VT7 на уровне 250 мА, амперметр должен показать уже суммарный ток покоя выходного каскада (обоих транзисторов), т.е. 510-515 мА. Подключив миллиамперметр к разъёму J1 можно проконтролировать суммарный ток покоя предоконечного каскада VT4,VT5. Ставим джампер-перемычку J1 на место.
На вход УМ подключаем источник сигнала частотой 3,6 МГц (выход ТХ платы ПДФ или ГСС при автономной настройке). Включаем режим телеграфа и нажав ключ подстроечным резистором R11 основной платы добиваемся выходного напряжения 22,4 Вэфф в нагрузке 50(51) Ом, т.е. номинальной выходной мощности 10 Вт. При наличии ВЧ вольтметра или осциллографа с малоёмкостным щупом можно проконтролировать покаскадное прохождение сигнала, ориентировочные значения которого в контрольных точках показано на принципиальных схемах.
Монтаж УМ выполняется на односторонней печатной плате размерами 110х50 мм с маской и маркировкой. Намоточные данные трансформаторов и катушек индуктивности приведены на принципиальной схеме.



Стоимость печатной платы усилителя мощности 110х50 мм - 120 грн.

Стоимость набора для сборки усилителя мощности с транзисторами IRF510 - 400 грн.

Стоимость набора для сборки усилителя мощности с транзисторами RD16HHF1 - 820 грн.
Состав набора можно увидеть (радиатор в комплект не входит)
ДОПОЛНИТЕЛЬНО:

Стоимость изолирующего комплекта для одного транзистора (втулка М3, прокладка, винт М3х12, шайба Д3) - 5 грн.


Стоимость одного транзистора RD16HHF1 - 235 грн.
Стоимость одного транзистора IRF510 - 20 грн.
Кольцо ферритовое М2000НМ К7х4х2 - 3 грн.

Стоимость радиатора 122х50х37 мм (без сверловки отверстий и нарезки резьбы) - 120 грн.
Паста теплопроводящая КПТ-8 (баночка 10 г) - 15 грн.
На силиконовой основе. Рабочая температура от -60 до +180 °С


Кольцо ферритовое EPCOS (N87 R12.7x7.9x6.35) - 15 грн.


Видео работы трансивера на 160, 80 и 40 м диапазонах с усилителем на 2хRD16HHF:

Видео измерения мощности на всех КВ диапазонах, но на входе меандр, с усилителем на 2хRD16HHF:

схема межблочных соединений :


Конечно же, стандартно можно применить плату генератора плавного диапазона (ГПД) и цифровую шкалу для "стабилизации" частоты. Схемы и описание ГПД приведены на сайте Но хочется хоть как-то усовершенствовать конструкцию и сделать более современной, что ли;)

При разработке самодельного многодиапазонного KB трансивера ставилась задача создать простой универсальный приемо-передающий тракт, имеющий минимальную коммутацию цепей в режимах приема и передачи и обеспечивающий отличную повторяе-мость, а значит, с минимумом настроечных элементов. Предлагаемая вниманию читателей схема основного тракта рассчитана на начи-нающих радиолюбителей, не имеющих, как правило, сложных и дорогих контрольно-измерительных приборов. Собрать ее можно практически из того, что "лежит под руками". Опытный радиолюбитель может по своему усмотрению добавить в схему необходимые узлы и сделать маленький легкий трансивер для работы в эфире с дачи или в походе.

Схема основного тракта (рис.1) очень проста, логична и легко "читается". Это классический супергетеродин с одним преобразованием частоты.

В режиме приема (RX) сигнал с выхода диапазонных полосовых фильтров (ДПФ) поступает на "классический" кольцевой диодный смеситель . На другой вход смесителя подается сигнал с генератора плавного диапазона (ГПД). С выхода смесителя сигнал промежу-точной частоты (ПЧ) поступает на первый каскад усилителя промежуточной частоты (УПЧ), выполненный на транзисторах VT1 и VT2. Нагрузкой этого каскада является кварцевый фильтр ZQ1, обеспечивающий основную селективность приемника по соседнему каналу. Отфильтрованный сигнал усиливается еще одним каскадом УПЧ на транзисторах VT3 и VT4, который также нагружен на кварцевый фильтр (ZQ2), который является "подчисточным". С выхода этого фильтра сигнал поступает на третий каскад УПЧ на транзисторах VT5 и VT6, а с его выхода - на второй диодный кольцевой смеситель, на который также подается сигнал опорного кварцевого генератора (ОГ), выполненного на транзисторе VT10. На выходе смесителя выделяется сигнал звуковой частоты, который через нормально замкнутые релейные контакты К2.1 поступает на усилитель низкой частоты (УНЧ) на микросхеме LM386. Эта широ-ко распространенная микросхема имеет хорошие усилительные и шумовые характеристики. Выход УНЧ нагружен на переменный резистор R32, который обеспечивает регулировку громкости. ВА1 - компьютерная гарнитура, в которой "динамики" сопротивлением 2x32 Ом включены параллельно. На элементах С28, VD9, VD10, R26, С24 и VT9 выполнена схема автоматической регулировки усиления (АРУ), предложенная Сергеем Беленецким, US5MSQ, в приемнике "Малыш" (спасибо, Сергей!). Несмотря на свою простоту, АРУ довольно эффективна и позволяет весьма комфортно принимать сигналы с уровнями от эфирных шумов до 9 +40 дБ по S-метру.
АРУ начинает срабатывать при силе сигналов 7 баллов и больше. "Давить" более слабые сигналы, на мой взгляд, смысла нет. При выбранном пороге работы АРУ слабые станции легко "читаются" на фоне гораздо более мощных. В S-метре используется усилитель постоянного тока на транзисторе VT11, нагруженный на микроамперметр с током максимального отклонения 200 мкА.
Прежде чем перейти к рассмотрению работы тракта в режиме передачи, отмечу, что все три каскада УПЧ являются реверсивными. Идея реверсивного усилителя была почерпнута из схемы, размещенной на сайте американского радиолюбителя SteVen Weber, KD1JV (http:// kd1jv.). В режиме передачи (ТХ) при нажатии на педаль срабатывают реле К1 - КЗ. Релейными контактами К1.1 реверсируется направление прохождения сигнала в каскадах УПЧ, а через контакты К3.1 напряжение питания подается на микрофонный усилитель (при этом снимается напряжение питания с УНЧ и УПТ S-метра). Сигнал с микрофонного усилителя на транзисторах VT7 и VT8 через релейные контакты К2.1 поступает на кольцевой смеситель на диодах VD5 - VD8, в режиме передачи играющий роль балансного модулятора. С выхода модулятора двухполосный сигнал с подавленной несущей (DSB) проходит через все три каскада УПЧ в "обратном" направлении (т. е. от балансного модулятора к смесителю на диодах VD1 - VD4), и в процессе прохождения сигнала кварцевыми фильтрами ZQ1 и ZQ2 выделяется требуемая боковая полоса, т. е. формируется SSB-сигнал. Дальнейший перенос однополосного сигнала ПЧ на рабочую частоту, находящуюся в одном из любительских KB диапазонов, происходит в кольцевом смесителе на диодах VD1 - VD4, после которого сигнал подается на диапазонные полосовые фильтры. В режимах приема и передачи используется один комплект 50-омных ДПФ. Подавление несущей в балансном модуляторе регулируется подстроечным резистором R20. Возможно (подчеркиваю - возможно!), для более глубокого подавления придется параллельно какому-нибудь из диодов модулятора подключить подстроечный конденсатор емкостью 4 - 25 пФ. Иногда такие конденсаторы на схемах изображают пунктиром. Но при хорошо подобранных диодах необходимости в конденсаторе нет, поэтому на схеме он не изображен.
Несколько слов о самих реверсивных каскадах. Режимы транзисторов устанавливаются автоматически, и при исправных деталях каскады в настройке не нуждаются. При напряжении питания +6 В коэффициент усиления такого каскада составляет 17 - 18дБ, при +9В - +20 дБ, при 12 В - +23 - 24 дБ. При этом за счет глубоких обратных связей каскад работает очень устойчиво, а коэффициент усиления слабо зависит от типа применяемых транзисторов. Первые эксперименты проводились на парах транзисторов КТ315 и КТ361, но, руководствуясь желанием получить в режиме приема максимально достижимые шумовые характеристики тракта, я отдал предпочтение транзисторам КТ368. Транзисторы структуры р-п-р, работающие в режиме передачи, могут быть любыми из серий КТ363, КТ326, КТ3107.
Как видно из схемы, все три каскада идентичны, за исключением каскада на VT5 и VT6, в котором отсутствует конденсатор в эмиттерной цепи транзистора VT5. Это сделано для снижения коэффициента усиления в режиме передачи, что позволяет избежать перегрузки последующих каскадов и смесителя.
Транзистор КП501 в системе АРУ можно заменить импортным 2N7000. В качестве индикатора S-метра хорошо подходит измерительная головка от старого кассетного магнитофона.
Диоды для смесителей желательно подобрать по прямому сопротивлению. Безусловно, наилучшие результаты получатся в том случае, если применить диоды, специально разработанные для смесителей и подобранные в "четверки" (например, КД922АГ). Однако если этих диодов нет, не надо отчаиваться - в схеме будут неплохо работать даже КД521.
Широкополосные трансформаторы Т1, Т2 и Т8 намотаны на кольцах К7х4х2 проницаемостью 600 - 1000НН тремя слегка скрученными проводами (2-3 скрутки на сантиметр) ПЭВ диаметром 0,15 - 0,17 мм и имеют 15 -18 витков. Трансформатор балансного модулятора Т7 должен иметь достаточную индуктивность для сигналов звуковых частот, поэтому его нужно намотать на кольце К10x6x5 проницаемостью не ниже 1000HH такой же скруткой проводов (в один слой) до заполнения кольца. Особое внимание следует обратить на симметричность выполнения обмоток всех трансформаторов - от этого зависит качество балансировки смесителей.
Трансформаторы ТЗ - Т6 намотаны на кольцах К7х4х2 проницаемостью 600 - 1000НН двойным скрученным (2-3 скрутки на сантиметр) проводом ПЭВ диаметром 0,15 - 0,17 мм и имеют 15 -18 витков, включенных согласно-последо-вательно (начало одной обмотки соединяется с концом другой, образуя средний вывод). Катушка L1, используемая для подстройки частоты ОГ, имеет 25 витков провода ПЭЛ-0,1, намотанного на каркасе 05 мм с подстроенным сердечником от СБ9 с резьбой МЗ, и помещена в экран. Реле К1 - КЗ желательно применить малогабаритные (например, РЭС49 или РЭК23). О кварцевых фильтрах: в авторском варианте 1-й ФОС - восьмикристальный, 2-й ("подчисточный") - четырехкристальный. Но это не требование, а скорее, пожелание. В принципе, в схеме можно применять любые фильтры и на любую частоту, доступные радиолюбителю. Это еще одно достоинство примененных реверсивных каскадов, в которых отсутствуют резонансные цепи, требующие настройки. Однако следует иметь в виду, что поскольку в УПЧ используется не самая оптимальная, но зато очень простая и доступная начинающему радиолюбителю простейшая автотрансформаторная схема согласования между усилителями и кварцевыми фильтрами, то единственное требование к кварцевым фильтрам заключается в величине их входного и выходного сопротивлений, которая должна быть в пределах 220 - 330 Ом. Как правило, кварцевые фильтры, изготовленные на распространенных ПАЛовских кварцевых резонаторах на частоту 8,867 МГц, удовлетворяют этому требованию.
С основной платой можно использовать любой ГПД или синтезатор частоты, работающий на соответствующих частотах и формирующий требуемое напряжение выходного сигнала. Не следует подавать на смеситель напряжение более 1,2 - 1,5 В, т. к. это приведет к росту собственных шумов тракта. Тем не менее, если используемый ГПД имеет достаточную мощность, то в первом смесителе можно установить по два последовательно включенных диода в плече. В этом случае можно ожидать некоторого увеличения динамического диапазона (на несколько децибел) в режиме приема, а также можно увеличить уровень выходного сигнала в режиме передачи - до 200 - 250 мВ вместо 100 - 150 мВ со смесителем, в котором установлено по одному диоду в каждом плече.
Диапазонные полосовые фильтры с входным и выходным сопротивлением 50 Ом можно применять любые - как самодельные, так и промышленные. В авторском варианте используются самодельные ДПФ от трансивера RA3AO.
Особо хочу отметить, что в режиме приема следует подобрать оптимальный уровень сигнала с ОГ, ориентируясь на наилучшее соотношение сигнал/шум на выходе тракта. Уровень выходного сигнала ОГ во многом определяется добротностью кварцевого резонатора ZQ3. Оптимальный уровень можно установить подбором емкости конденсатора С20 в пределах 47 - 100 пФ и/или сопротивления резистора R23 (330 - 750 Ом).
Микрофонный усилитель на транзисторах VT7 и VT8 требуется только при использовании динамического микрофона. Если трансивер будет работать с электретным микрофоном, имеющим ЭДС 100 мВ и более, то достаточно установить только эмиттерный повторитель, изготовив его по любой из известных схем.
Реальную чувствительность тракта подсчитать несложно: потери в ДПФ составляют -6 дБ, потери в смесидБ, коэффициент усиления 1-го УПЧ - +20 дБ, потери в 1-м кварцевом фильтре - -6 дБ, коэффициент усиления 2-го УПЧ - +20 дБ, потери во 2-м кварцевом фильтре - -4 дБ, коэффициент усиления 3-го УПЧ - +20 дБ. Итого, до входа детектора (перед конденсатором С11) коэффициент усиления приемного тракта составляет +38 дБ или 80 раз по напряжению. Со входа детектора реальная измеренная чувствительность (при соотношении сигнал/шум 10 дБ) составляет 10 мкВ. Таким образом, предельно достижимая чувствительность с антенного входа может достигать 0,125 мкВ. Это теоретически, а реально - не хуже 0,35 мкВ. И все это благодаря малошумящему УПЧ с его относительно небольшим усилением.
На низких (читай - звуковых) частотах гораздо легче получить большой коэффициент усиления (как, например, в приемниках прямого преобразования). Коэффициент усиления УНЧ на микросхеме LM368 может достигать свыше 70 дБ! Для того чтобы убрать излишек усиления ("белый шум"), установлен подстроенный резистор R29.
Если на базе этого тракта предполагается изготовить трансивер на НЧ диапазоны, то напряжение питания реверсивных каскадов желательно уменьшить до +6 В, заменив интегральный стабилизатор 78L09 на 78L06.
Регулировку усиления по ВЧ лучше всего выполнить на основе плавного аттенюатора (рис.2), который устанавливается перед ДПФ.
Основной тракт можно дополнить телеграфным генератором (рис.3). Его схема практически не отличается от схемы ОГ (за исключением элемента подстройки частоты - вместо индуктивности используется конденсатор, позволяющий "утянуть" частоту генератора "вверх").

C основным приемо-передающим трактом используется транзисторный усилитель мощности (рис.4) с выходной мощностью около 30 Вт.

В авторском варианте усилитель выполнен "на пятачках" на плате из фольгированного стеклотекстолита, установленной на радиаторе, на котором закреплены транзисторы VT2 (непосредственно) и VT3-VT5 (через изоляционные прокладки). Для повышения устойчивости работы каскадов на транзисторах IRF510 на вывод затвора каждого транзистора надето кольцо К7-4-2 М1000НН.
Настройку усилителя начинают с установки токов покоя транзисторов(без подачи ВЧ сигнала): VT1 - 34 mA (подбором сопротивления резистора R4), VT2 - 150 mA (подбором сопротивления резистора R9), VT3 - 250 mA (подбором сопротивления резистора R13), VT4 и VT5 - примерно по 200 mA (c помощью подстроечных резисторов R16 и R17).Конденсатор С6 - очень важный элемент схемы, во многом определяющий сквозную АЧХ усилителя мощности. Настройку АЧХ следует начинать с диапазона 28 Мгц подбором емкости конденсатора С6, подав на вход усилителя ВЧ напряжение 100-120 мВэфф. При этом выход усилителя должен быть подключен к 50-омному эквиваленту антенны через предварительно настроенные фильтры нижних частот. Допустим что выходное напряжение в диапазоне 28 Мгц составило 40 В эфф. Далее переходим к более низкочастотным диапазонам и подбором емкости конденсатора С6 добиваемся выходного напряжения около 40 В эфф.. А можно сразу установить С6 емкость 1000 пФ и сравнить выходную мощность в диапазонах 3,6 и 28 Мгц. Возможно, усилитель будет иметь вполне "приличную" АЧХ. Если же выровнять АЧХ подбором емкости конденсатора С6 не удается, придется установить параллельно первичным обмоткам трансформаторов Т2 и Т3 конденсаторы (на схеме отсутствуют, т. к. необходимости в них может и не быть) емкостью 30-50 пФ.
В заключении отмечу, что за год работы на трансивере, выполненном на базе приведенных схем, сработано свыше 160 стран по списку DXCC и получено более 210 дипломов по программе EPC.

Игорь Августовский (RV3LE)

Монтажная схема основной платы TRX «Клопик» (плата 2.0).

На данную плату возможна установка собранных кварцевых фильтров «КФ-8м» и «ПКФ-4м».


Самодельный трансивер

UR0VS

Трансивер был сделан с учетом его разработки за полтора месяца. Причем по будням с 20:00 до 24:00, а по выходным ему уделялось внимание до обеда. Посему его постройку можно порекомендовать не очень опытным радиолюбителям. Оригинальностью схема не выделяется. В силу занятости я не стал изобретать "велосипед" (очень хотелось вновь в эфир), а сложил воедино содержимое своих "ящиков" с радиодеталями, и хорошо зарекомендовавшие себя ранее разработанные узлы. Из тех же соображений всякий там сервис типа VOX , расстройка и т.д., не разрабатывался. Правда корпус у меня был и я ограничился только сверлением отверстий в нужных местах для крепления плат.

Схема и печатные платы были разработаны с помощью системы проектирования OrCad 9.0 . Кварцевый фильтр был рассчитан с помощью великолепной, на мой взгляд, программы от UA1OJ. Доводить его после расчета, даже не пришлось.

Тактико-технические характеристики

Мощность - 7-10 ватт (зависит от диапазона).С ламповым усилителем 100 ватт, расположенные вблизи телевизоры не "подскакивают".

Чувствительность – достаточная:) даже без УВЧ (узел А5).

Забитие – в норме (какое там забитие:), радиолюбителей почти не осталось).

Короче для повседневной работы телефоном в сельской местности, что надо. А главное современней чем UW3DI.

Схема трансивера

Блок А1 - основная плата. Состоит из смесителей среднего уровня на диодах (D1 - D4,D6,D8 - D10), усилителя ПЧ (Q3,Q1,Q4), переключающего свое направление с помощью реле (K1 - K2), усилителя НЧ (U1), схемы АРУ (Q7 - Q8). На транзисторах Q2 - Q5 собраны эмиттерные повторители для согласования гетеродинов со смесителями. Опорный гетеродин собран транзисторах VT1, Q6. Микрофонный усилитель Q9 - Q10. Оконечный УНЧ Q11 - Q13.

Печатная плата блока А1 разводилась в двух вариантах. Разница между вариантами заключается в примененных кварцах. У меня стоят кварцы в корпусах Б1 частота 9050кГц, но имеется возможность установки маленьких кварцев например от декодеров PAL/SECAM на частоту 8865 кГц.

Блок А2 - ГПД. Нечто подобное применяется в трансивере "Дружба". Только здесь чуть проще. Собран в медной луженной коробке от какой то старой радиостанции. На печатной плате собран только делитель частоты. Все остальное на керамических стойках. В качестве стоек (эта мысль пришла в голову моего товарища UR0VF) можно применить сломанные резисторы МЛТ, только необходимо очистить "черный" слой. Контур керамический с воженной медью от той же р-ст. Полное описания этого узла не привожу по причине описанной чуть ниже.

Блок А3 - полосовые фильтры. Комментировать этот узел не имеет смысла по очень простой причине. Как правило у радиолюбителей содержимое "ящичков" у всех разное и если пытаться применять все те детали, что у автора, то любая конструкция превращается в "проект всей жизни". Смело берите этот узел от любой конструкции на которую у вас есть комплектация (это как раз касается и ГПД). Если это будут ПФ от "дроздивера" то аппарат будет иметь еще лучшую характеристику. А от узла А5 в этом случае можно будет вообще отказаться. Лишь скажу, что применил ПФ такие же как в трансивере "Урал-84".

Блок А4 - "умощнитель". Все трансформаторы намотаны на кольцах К10 х 5 проводом ПЭВ 0,3 - 0,5 со скруткой и имеют по 12 витков. Трансформатор Т3 мотается 3-мя проводами. В этом узле выбор деталей не такой уж большой. Можно поварьировать с другими транзисторами в оконечной ступени. Очень хорошо работают КТ921, они как раз и предназначены для работы в линейных усилителях. Был опыт применения в этом каскаде (по причине неосторожного включения) транзисторов средней мощности КТ606А. Мощность в этом случая была во всех диапазонах одинаковая, но правда не очень большая. Порядка 4,5 ватт! Для тех, кого "боятся транзисторы", можно порекомендовать хорошо зарекомендовавшую себя схему на лампе. Про это чуть ниже.

Блок А5 – отключаемый УВЧ. Комментировать вроде нечего

Есть еще один блок. Это цифровая шкала (для нее в ГПД предусмотрен OUT2). Здесь я тоже не стал выдумывать, "своял" очень простую шкалу на PIC-контролере и АЛС318, конструкции RA3RBE. Правда чуть пришлось доделать. Очень сильная помеха была ВЧ диапазонах. Пропала лишь только тогда, когда на ее входе я установил эмиттерный повторитель. Обращаю внимание на слово эмиттерный, истоковый ничего не дает!

Блок питания очень простой. Это КР142ЕН8Б, стоящая на стенке корпуса, а постоянное напряжение порядка 17-18 вольт до этой микросхемы используется для питания оконечного каскада УМ. Еще одно требование - трансформатор блока питания должен обеспечить ток порядка 2,5А.

Все резисторы типа МЛТ 0.125 - 0.25. Конденсаторы керамические типов КМ - 5, КМ - 6. Катушки L1 и L4 в блоке A1 намотаны на каркасах от блоков СМРК старых телевизоров. Они имеют диаметр 6мм с карбонильными сердечниками 4мм. Для частоты 9МГц, L1 - 20 витков. Провод ПЭЛШО 0,25. Катушка связи имеет 5 витков, того же провода. C16 в этом случае 240 пф. L4 – тот же провод мотается до заполнения. Трансформаторы Т1, Т2 и Т4, Т5 наматываются на кольцах проницаемостью 600 - 100НМ с наружным диаметром 7 - 10мм в три провода со скруткой 4 - 5 скрутки на сантиметр, таким же проводом, что и контура. Т3, Т6 – тот же провод, тоже со скруткой, только в два провода. Начало – конец обмоток видно на рисунке со стороны монтажа.

Печатная плата изготавливается из двухстороннего текстолита и верхний слой используется как «земляной» провод, таким образом получается прекрасная экранировка. W1,W2 это отрезки тонкого коаксиального кабеля.

В ГПД все подстроечные конденсаторы с воздушным диэлектриком емкостью 1 - 10пф. В качестве переменного сдвоенного КПЕ можно применить конденсаторы от старых приемников емкостью 5 - 495пф, только в этом случае последовательно с ними надо включить емкости порядка 25 - 33пф. Все частотозадающие конденсаторы должны иметь отрицательный ТКЕ – М47, М75. Схематическое расположение деталей в корпусе ГПД изображено на рисунке.

Сборка - настройка

Я не даром объединил два этих понятия. Так, как к примеру основная плата представляет собой многофункциональный блок (это касается трансиверов любой конструкции), то понятие, как пишут многие "при исправных деталях... , и т.д.", здесь не "покатит". Советую делать таким образом. Начать с оконечного усилителя НЧ. Подать питание, если необходимо, то настроить, подобрав ток выходных транзисторов в пределах 15 - 20 мА. Дальше можно собрать микрофонный усилитель. Подключить микрофон подать питание на него и на УНЧ. Послушать самого себя. Дальше можно приступать к сборке кварцевого генератора. Проверить генерацию с помощью хотя бы вольтметра. Если у радиолюбителя нет ВЧ генератора, то напряжение с КГ можно использовать для предварительной настройки контура L1, усилителя ПЧ. Далее смесители, АРУ и буферные каскады для смесителей. Кварцевый фильтр можно строить на любом этапе. Методов настройки десятки. Каким образом настраивал автор, описано в начале сего «сочинительства». Еще два слова про конденсатор C14. На печатной плате он стоит особняком. При настройке баланса смесителя, из за разности емкостей диодов, ему возможно придется искать точку подключения к другому диоду.

Информацию о настройке остальных узлов в достаточном количестве можно подчерпнуть из массы других источников. В УМ необходимо будет установить ток покоя порядка 150-200мА. Зависит от пары примененных транзисторов. Для КТ606, ток должен составить 50-60мА.

В авторском варианте трансивер работает только на пяти диапазонах, это с связано отсутствием антенного хозяйства для работы на всех диапазонах. Однако желающие ввести все диапазоны, не должны столкнуться с какими-то трудностями.

Последние материалы раздела:

Как увеличить fps в компьютерных играх Что может поднять фпс на компе
Как увеличить fps в компьютерных играх Что может поднять фпс на компе

Увеличить FPS нужно в основном в играх. Часто это понятие путают так, что называют "уменьшить FPS". На самом деле нужно именно повышать данный...

Программы для общения в играх
Программы для общения в играх

Скачать программы для общения через Интернет бесплатно. Бесплатные программы общения в Интернете для Windows XP, 7, 8, 10. Загрузить программы для...

Настроить гитару с помощью тюнера
Настроить гитару с помощью тюнера

Приветствую вас, постараюсь преподнести подробную статью про настройку гитары по тюнеру . Предполагаю, что тюнер у вас уже имеется, а гитара тем...